Non-linear σ-model:

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma-2 \sigma^{2} \vec{D}_{\mu} \cdot \vec{D}^{\mu}-\frac{1}{2} \mu^{2} \sigma^{2}-\frac{\lambda}{4} \sigma^{4} \tag{1}
\end{equation*}
$$

where

$$
\vec{D}_{m} \equiv \frac{\partial_{\mu} \vec{J}}{1+\vec{J}^{2}}
$$

\rightarrow still invariant under SO(4):

- under isospin tiff. with infinitesimal $\vec{\theta}_{1}$

$$
\begin{equation*}
\delta \vec{\zeta}=\vec{\theta} \times \vec{J}, \quad \delta \sigma=0 \tag{L}
\end{equation*}
$$

and z is su(2)-isonvariant

- under broken symmetry turfs. SU(2)chir

$$
\delta \vec{\phi}=2 \vec{\varepsilon} \phi_{4}, \quad \delta \phi_{4}=-2 \vec{\varepsilon} \cdot \vec{\phi}
$$

then from $\zeta_{a} \equiv \frac{\phi_{a}}{\phi_{4}+\sigma}$ we get

$$
\begin{aligned}
1-\vec{\zeta}^{2} & =\frac{\left(\phi_{4}+\sigma\right)^{2}-\vec{\phi}^{2}}{\left(\phi_{4}+\sigma\right)^{2}}=\frac{2 \phi_{4}^{2}+2 \phi_{4} \sigma}{\left(\phi_{4}+\sigma\right)^{2}} \\
& =\frac{2 \phi_{4}}{\phi_{4}+\sigma} \\
\rightarrow \delta \vec{J} & =\vec{\varepsilon}\left(1-\vec{J}^{2}\right)+2 \vec{\zeta}(\vec{\varepsilon} \cdot \vec{\zeta}), \quad \delta \sigma=0 \quad(3)
\end{aligned}
$$

and thus $\delta \vec{D}_{\mu}=2(\vec{\zeta} \times \vec{\Sigma}) \times \vec{D}_{\mu}$ is a linear (though field-dependent) isospin rotation \rightarrow I remains invariant !

The rf rules (2) and (3) specify a "non-linear realization" of $\operatorname{su}(2) \times \operatorname{su}(2)$ Passing to the limit

$$
\mu, \lambda \longrightarrow \infty
$$

with $\frac{|\mu|}{\sqrt{\lambda}}=\langle\sigma\rangle$ constant,
σ can be integrated out, i.e. set to its, expectation value

$$
\rightarrow \quad \mathscr{L}=-\frac{F^{2}}{2} \vec{D}_{\mu} \cdot \vec{D}^{\mu}=-\frac{F^{2}}{2} \frac{\partial_{\mu} \vec{J} \cdot \partial^{\mu} \vec{\zeta}}{2\left(1+\vec{\xi}^{2}\right)^{2}}
$$

where $F=2\langle\sigma\rangle$
Choosing normalization

$$
\vec{\pi} \equiv F \bar{S}
$$

we get

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \frac{\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}}{\left(1+\vec{\pi}^{2} / F^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

$\rightarrow \frac{1}{F}$ acts as coupling parameter accompanying interaction of each additional pion
(4) specifies a "non-linear σ-model"

Remark:
The nan-linear σ-model has the following. geometric interpretation:
G (global symmetry group) spontaneous symmetry breaking $H \subset G$ (unbroken group)
\rightarrow Goldstone bosons parametrize the space G / H as a manifold
speify to $G=O(N+1), H=O(N)$

$$
\rightarrow O(N+1) / O(N) \sim S^{N}
$$

in our case $G=\operatorname{sO}(4) \sim \operatorname{su}(2) \times \operatorname{su}(2)$ and $H=\operatorname{su}(2)$

$$
\rightarrow G / H \sim(\operatorname{su}(2) \times \operatorname{su}(2)) / \operatorname{su}(2) \simeq \operatorname{su}(2) \simeq s^{3}
$$

Now S^{3} has $S O(3)$-invariant metric:

$$
d s^{2}=\frac{(d \bar{x})^{2}}{\left(1+|\vec{x}|^{2}\right)^{2}}
$$

with north pole of $x=\infty$.
This our $\vec{\pi}$-Lagrangian (4)!
pictorially:

Now left's continue our discussion of pion interactions
\longrightarrow expand \mathscr{L} in powers of $\frac{1}{F}$:

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(\partial_{\mu} \vec{\pi}^{j}\right) \cdot\left(\partial^{\mu} \vec{\pi}\right)+\frac{1}{2 F^{2}} \vec{\pi}^{2}\left(\partial_{\mu} \vec{\pi}\right)^{2}-\frac{1}{2 F^{4}} \vec{\pi}^{4}\left(\partial_{\mu}^{\vec{\pi}}\right)^{2} \\
& +\cdots \cdot
\end{aligned}
$$

$\pi \pi$-scattering to lowest order in $\frac{1}{F}$ is then given by

$$
\begin{gathered}
S=i(2 \pi)^{4} \delta^{4}\left(P_{A}+p_{B}-p_{C}-P_{D}\right) \\
\times M(2 \pi)^{-6}\left(16 E_{A} E_{B} E_{C} E_{D}\right)^{-1 / 2} \\
P \sim Q \lll F \\
T \\
\text { energy of } \\
\text { pions }
\end{gathered}
$$

where

$$
\begin{aligned}
& M_{a b c d}^{(v=2)}=4 F^{-2}\left[\delta_{a b} \delta_{c d}\left(-P_{A} \cdot P_{B}-P_{c} \cdot P_{D}\right)\right. \\
& \left.\quad+\delta_{a c} \delta_{b d}\left(P_{A} \cdot P_{c}+P_{B} \cdot P_{D}\right)+\delta_{a d} \delta_{b c}\left(P_{A} \cdot P_{D}+P_{B} \cdot P_{c}\right)\right]
\end{aligned}
$$

where a, b, c, d are isovector indices v indicated number of derivatives
At one-loop we get

\rightarrow gives corrections to Lagrangian of the form $\left(\vec{D}_{m} \cdot \vec{D}_{m}\right)^{2}$ and $\left(\vec{D}_{\mu} \cdot \vec{D}_{r}\right)\left(\vec{D}^{-} \cdot \vec{D}^{2}\right)$
(\mathcal{L} is non-renarmalizable but gives sensible results if we take all counter-terms into account)
\rightarrow most general effective Lagrangian consistent with our symmetries:

$$
\mathcal{L}_{\text {eff }}=-\frac{F^{2}}{2} \vec{D}_{\mu} \cdot \vec{D}^{\mu}-\frac{C_{4}}{4}\left(\vec{D}_{\mu} \cdot \vec{D}^{\mu}\right)^{2}-\frac{C_{4}^{\prime}}{4}\left(\vec{D}_{\mu} \cdot \vec{D}_{\nu}\right)\left(\vec{D}^{\mu} \cdot \vec{D}^{\nu}\right)
$$

- each derivative in each interaction vertex
- internal pion propagator $\longrightarrow Q^{-2}$
- $d^{4} q$ associated to each loop $\rightarrow Q^{4}$
\rightarrow general connected diagram of order Q^{2} :

$$
v=\sum_{i} V_{i} d_{i}-2 I+4 L
$$

where d_{i} is number of derivatives in an interaction of type i, V_{i} is vertices of type i, I is \#pion lines, L is $\#$ loops
We have:

$$
\begin{aligned}
L & =I-\sum_{i} V_{i}+1 \\
\rightarrow v & =\sum_{i} V_{i}\left(d_{i}-2\right)+2 L+2
\end{aligned}
$$

$\begin{gathered}\text { Observe: } \\ v=2\end{gathered} \quad v \geq 2 \quad\left(d_{i} \geq 2, L \geq 0\right)$
A $v=4$ we get:

$$
\begin{aligned}
& M_{a b c d}^{(2=4)}=\frac{\delta a b \delta c d}{F^{4}}\left[-\frac{1}{2 \pi^{2}} s^{2} \ln (-s)-\frac{1}{12 \pi^{2}}\left(u^{2}-s^{2}+3 t^{2}\right) \ln (-t)\right. \\
& -\frac{1}{12 \pi^{2}}\left(t^{2}-s^{2}+3 u^{2}\right) \ln (-u)+\frac{1}{3 \pi^{2}}\left(s^{2}+t^{2}+u^{2}\right) \ln \left(\Lambda^{2}\right) \\
& \left.-\frac{1}{2} c_{4} s^{2}-\frac{1}{4} c_{4}^{\prime}\left(t^{2}+u^{2}\right)\right]+ \text { crossed terms }
\end{aligned}
$$

where

$$
s=-\left(p_{A}+p_{B}\right)^{2}, t=-\left(p_{A}-p_{C}\right)^{2}, u=-\left(p_{A}-p_{D}\right)^{2}
$$

\rightarrow define renormalized couplings:

$$
\begin{aligned}
& c_{4 R}=c_{4}-\frac{2}{3 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right) \\
& C_{4 R}^{\prime}=c_{4}^{\prime}-\frac{4}{3 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right)
\end{aligned}
$$

where μ is renormalization scale of order Q

$$
\begin{aligned}
& \rightarrow M_{a b c d}^{(2=4)} \\
& =\frac{\delta_{a b} \delta_{c d}}{F^{4}}\left[-\frac{1}{2 \pi^{2}} s^{2} \ln \left(\frac{-s}{\mu^{2}}\right)-\frac{1}{12 \pi^{2}}\left(u^{2}-s^{2}+3 t^{2}\right) \ln \left(\frac{-t}{\mu^{2}}\right)\right. \\
& \left.-\frac{1}{12 \pi^{2}}\left(t^{2}-s^{2}+3 u^{2}\right) \ln \left(\frac{-4}{\mu^{2}}\right)-\frac{1}{2} c_{4 R} s^{2}-\frac{1}{4} c_{4 R}^{1}\left(t^{2}+u^{2}\right)\right]
\end{aligned}
$$

+ crossed terms
Axial-vectar current:

$$
\begin{aligned}
\vec{\Sigma} \cdot \vec{A}^{\mu} & =-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \vec{J}\right)} \cdot \delta \vec{J} \quad \text { (Noether's theorem) } \\
\rightarrow & \vec{A}^{\mu}
\end{aligned}=-\left(1-\vec{J}^{2}\right) \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \vec{J}\right)}-2 \vec{J} \vec{J} \cdot\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \vec{J}\right)}\right) \text {) }
$$

is current generated by $2 \vec{x}=2 \gamma_{5} \vec{t}=\gamma_{5} \vec{t}$
we find:

$$
\vec{A}^{\mu}=F\left[\partial^{\mu} \vec{\pi} \frac{\left(1-\vec{\pi}^{2} / F^{2}\right)}{\left(1+\vec{\pi}^{2} / F^{2}\right)}+\frac{2 \vec{\pi}\left(\vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right)}{\vec{F}^{2}\left(1+\vec{\pi}^{2} / F^{2}\right)^{2}}\right]+\cdots
$$

\rightarrow in lowest order the pion decay amplitude $\langle V A C| \vec{A}^{n}\left|\pi_{1}\right\rangle$ is

$$
\begin{aligned}
& \langle V A C| F \partial^{\mu} \pi_{a}(x)\left|\pi_{b}\right\rangle+O\left(Q / /^{2}\right) \\
& =F \partial^{\mu} \underbrace{\langle V A C| \pi_{a}(x)\left|\pi_{b}\right\rangle}+G\left(Q_{2}^{2}\right) \\
& =\frac{e^{+i p_{\pi_{b}} \cdot x} \delta_{a b}}{(2 \pi)^{3 / 2} \sqrt{2 p_{\pi_{b}}^{0}}} \\
& =i \frac{F P_{\pi_{b}}^{\mu} e^{i P_{\pi_{b}} \cdot x} \delta_{a b}}{(2 \pi)^{3 / 2} \sqrt{2 P_{\pi_{b}}^{0}}}+C\left(\frac{Q_{2}^{2}}{F}\right), \quad P_{\pi_{b}} \sim Q \\
& \rightarrow F_{\pi}=F \text { ! }
\end{aligned}
$$

\rightarrow Loment invariance tells us that higher order corrections must be proportional to powers of $P_{\pi}^{2} / F_{\pi}^{2}$ (small as $m_{\pi} \sim 0$ approximately)

